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ENERGY TRANSFER MECHANISMS IN
LASER DYE MIXTURES

S. R. Inamdar,"* B. G. Mulimani,' M. L. Savadatti,'
A. V. Sapre,” and T. Mukherjee?

"Laser Spectroscopy (DRDO/KU), Department of
Physics, Karnatak University, Dharwad 580 003, India
*Radiation Chemistry & Chemical Dynamics Division,
Chemistry Division, Bhabha Atomic Research Centre,

Trombay, Bombay 400 085, India

ABSTRACT

Measurements of fluorescence intensities in optically thick
(lasing) and thin (non-lasing) solutions and fluorescence life-
times of donor in binary mixtures of laser dyes have been
made. Various energy transfer parameters such as energy
transfer rate parameters, critical transfer radii and mean dif-
fusion lengths for four pairs of dyes have been determined.
Fluorescence intensities measured for optically thick solutions
were corrected to account for radiative transfer and direct
absorption of excitation by the acceptor. Energy transfer rate
parameters obtained from intensity as well as lifetime mea-
surements strongly support the dominance of energy transfer
via resonance mechanism.
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INTRODUCTION

Energy transfer (ET) has been studied extensively in many solvent-
solute' and solute-solute*™® systems. It deals with excitation of one
molecule (donor), optically or otherwise, which then transfers its excitation
energy to the second molecule (acceptor) that in turn luminesces. The pre-
requisite for such a system to work efficiently is substantial overlap of
absorption spectrum of the acceptor with the emission spectrum of the
donor. Study of energy transfer has been found to be useful in improving the
performance of the dye lasers and in the operation of energy transfer dye
lasers (ETDLs) simultaneously at two bands’®. There have been many
attempts to understand the energy transfer mechanisms operating in such
binary mixtures in different concentration regimes™”'° and to quantify the
contributions of radiative and nonradiative ET mechanisms''. Conte and
Martinho'' have developed a theory to account for direct absorption of
excitation by the acceptor and radiative transfer from donor to acceptor. As
part of our ongoing programme on photophysical characterization of laser
dyes, we have analyzed the influence of these factors on the energy transfer
rate parameters for four binary mixtures of dyes in the light of above theory.
This is important from the point of view of understanding the mechanisms
of ET operating in binary mixtures that are generally employed in ETDLs
(optically thick solutions) and non-lasing (optically thin) solutions. All the
four mixtures described in the present paper have been shown to be efficient
ETDLs with enhancement in output power, improvement in tunability,
concentration- and pump-threshold'*!*.

THEORY

The principal energy transfer mechanisms that have been established'*
as operating in binary mixtures are: (i) radiative transfer—where the photon
emitted by the excited donor (D¥) is absorbed by the acceptor (A) which
fluoresces, (ii) resonance transfer (Forster mechanism)—where the excita-
tion energy of the donor is transferred to the acceptor over a distance
through resonant dipole-dipole interaction and (iii) collisional transfer—
where the excitation energy of the donor is transferred to the acceptor
molecule on collision.
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If IY and Ip are the experimentally determined fluorescence inten-
sities of donor in the absence and in the presence of acceptor respectively,
then,

1/Ip = 1+ ket [A] (1)

where the square bracket denotes concentration. T3 is the fluorescence life-
time of donor in the absence of acceptor and k., the energy transfer rate
parameter, which includes contribution from all the three mechanisms
mentioned above. With a view to give a better description of non-radiative
transfer process, Conte and Martinho'' developed theoretical expressions to
account for radiative transfer and direct absorption of the excitation by the
acceptor, which become important at high concentrations where non-
radiative transfer and trapping of radiation are dominant. They showed
that,

a(Vexe) + @' (Vexes Ve
ID(Vexcv Vell?q) = II;(Vexcv Ve]1?1) ( CXC) 'd(V( )exc’ em)
exc

; (2)

where Ih (Vexe, Vem) is the actual donor fluorescence intensity observed at
donor’s emission wavenumber vy, when excited by wavenumber vex. Ip
(Vexe» Vem) is the intensity which would result if radiative transfer and direct
absorption of the excitation by the acceptor are absent and

a(Vexc) = Hp(Vexc)[D] sin B (3)

a/(Vexcv Veln?q) = [HA (Vexe) sin B+ py (Ve]r:;) sin OL] [A]; 4)

Up(Vexe) and pa(Vexe) being the molar absorptivities of donor and acceptor
molecules at the excitation wavenumber vey, respectively. pa(vey) is the
molar absorptivity of A at wavenumber of donor emission, « is the angle
subtended by the incident ray with the surface of the solution and  the
angle formed by the emitted radiation with the surface of solution.

The decrease in fluorescence lifetime of donor with increasing con-
centration of the acceptor is a direct evidence of the non-radiative ET
process. The measured fluorescence lifetime of donor in the absence (t) and
in the presence (tp) of varying concentrations of acceptor are generally
found to obey Stern-Volmer relationship:

15/t = 1 + ke [A]T], (5)
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where k. is the excitation transfer rate parameter for ET due to resonance
mechanism. The plot of rDO/rD versus [A] yields k.. The same plot can be
used to determine the concentration of A at which the donor lifetime
becomes equal to t"/2. This value of [A], known as half quenching con-
centration [A];/,, may be used to determine the critical transfer radius, R,
defined as distance of separation of donor and acceptor molecules for which
energy transfer from D*—A and emission from D*, are equally probable'>.
It is expressed as

Ry = 7.35/[A] )} (6)

Ry can also be calculated from spectral data using the relation

9000 (In10) K*¢p,  Fp(v)ea(v)
O T T 12870 N vA

dv, (7)

where Fp(v) is the fluorescence spectrum of the donor, ea(v) is the
absorption spectrum of the acceptor, (both measured on the wavenumber
scale), ¢p is the fluorescence quantum yield of donor, n is refractive index of
the medium and N is Avogadro’s number. K denotes the orientation factor
and is (2/ 3)!/2 for random orientation of molecules.

Often, in literature, in the study of ET, the values of R, are
compared with the mean diffusion length ‘d’ of donor and acceptor in
binary mixtures to identify the ET mechanism. This mean diffusion
length is defined as'®

d = (2Dt)) /2 ®)

with D = Dp + Da. Here Dp and Dy are the diffusion coefficient of donor
and acceptor, respectively. D is given by Stokes-Finstein relation

D =kgT/6mnr,

with 1 the viscosity of the medium, r the radius of the diffusing molecule, kg
the Boltzmann’s constant and T the absolute temperature.

Comparing d and Rg the studies of ET can be divided into three
regimes'®:

(i) a diffusion controlled Stern-Volmer region where d > Ry,
(ii) an intermediate region where d ~ R,
(ii1) resonance transfer or Forster region where d < Ry.
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MATERIALS AND METHODS

Absorption spectra were recorded on a Hitachi (UV/vis) spectro-
photometer (Model 150-20). Fluorescence spectra were recorded on a fluor-
escence spectrophotometer set up in our lab (Fig. 1) comprising a 400 W Hg
lamp with a monochromator M, used as the excitation source and a quartz
cylindrical lens to focus the light onto a 1sq.cm. quartz cell. The cell holder
was so mounted that it could be adjusted with ease for both front surface and
perpendicular configurations. A scanning monochromator and a photo-
multiplier collected the fluorescence emission and the spectra were recorded
on an X-Y recorder (Riken-Denshi Model F-3DG). This experimental
arrangement was specifically designed for the present study and calibrated by
recording the known fluorescence spectra of standard dyes, rhodamine 6G,
fluorescein, etc. As compared to commercial fluorescence spectrophotometers
this set-up has the flexibility of recording spectra in front surface configura-
tion, which is essential for solutions at higher concentrations.

Fluorescence lifetimes of donor without and with different con-
centrations of acceptor were measured using Edinburgh’s Model 199
Fluorescence Time Domain Spectrometer.

The dyes chosen for the present study, coumarin 1 (C1), coumarin 102
(C102) and uranine (Ur) were obtained from Exciton Chemical Company,

s L+-Cylindrical lens
z O Exeltatinn n < E-Ssar;:plt_e cclalll
QE Mapochrematar 1/ N p-Spherical lens
- L1 P-Photomultiplier
Hy lamp My
C4ADD W)

Emisslon
XY Recorder Mapachromatar,
X (31
B, SO "

B

Figure 1. Experimental setup to record fluorescence spectra.
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USA and acridine orange (AO) from E. Merck, Germany, and were used
without further purification. Ethanol (Fluka, Germany) was used as a sol-
vent in all the experiments.

The following four combinations of dyes were chosen for the present
study:

Pair Donor (D) Acceptor (A)
I coumarin 1(Cl) uranine (Ur)
11 coumarin 102 (C102) uranine (Ur)
I coumarin 1 (C1) acridine orange (AO)

IV coumarin 102 (C102) acridine orange (AO)

C1, C102 and Ur are laser dyes and AQO is useful as biological stain. AO is very
important for the present study as it does not lase on its own when pumped by
nitrogen laser but lases as energy transfer dye laser in combination with Cl1,
C102 and C339 as donors'*!”. It has also been used as a fluorescent inter-
calator in the study of fluorescence quenching by DNA molecule'®.

RESULTS AND DISCUSSION

The absorption spectra for all these dyes and their mixtures were
recorded at low concentration (5x 107>M). The donors exhibit good
absorption at the excitation wavelength, 365 nm, whereas acceptors weakly
absorb (Fig. 2).

Note that the individual absorption bands of D and A are present in
the mixture too, indicating absence of complex formation in the mixture at
these concentrations.

The fluorescence spectra of the individual dyes reveal the fact that
coumarins exhibit almost no red shift due to concentration whereas uranine
and acridine orange show appreciable red shift with increasing concentra-
tion indicating self-absorption. The fluorescence spectra of mixtures were
recorded in perpendicular as well as front surface configurations.

(1) Perpendicular Configuration

The fluorescence spectra of dye mixtures (Pairs I through IV) with
concentrations of donor fixed at 1 x 10~*M and varying concentrations of
acceptor (optically thin solutions) were recorded in the perpendicular
configuration. Figure 3 depicts the fluorescence spectra for mixtures of C1
and Ur (Pair I).
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Figure 2. Absorption spectra of Cl, Ur, and mixture.

The peak intensities of the measured donor fluorescence emission were
corrected for sensitivity of the detector and used to plot I3 /Ip vs. [A] (Fig. 4).

The ET rate parameters k.; were determined from these linear plots.
However, no corrections for radiative transfer and direct absorption of
excitation by the acceptor were applied since such corrections are not
available for this experimental configuration. Though Eq. (2) is valid for
measurements made in reflection (for high O.D. solutions) there are reports
of the use of this expression in the low concentration regimes, where they are
not valid'*°.

(2) Front Surface Configuration

The fluorescence spectra of dye mixtures for all the four pairs (opti-
cally thick solutions) with concentration of donor maintained constant at
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Figure 3. Fluorescence spectra of Cl1 and Ur mixtures recorded in perpendicular
configuration (not corrected for spectral sensitivity of detector).

5% 107°M and that of acceptor varied from of 107> to 10°M were
recorded in the front surface configuration (with o=30° and 3 =60°).

Typical fluorescence curves obtained for pair II are shown in Fig. 5.
The fluorescence intensities of donor emission were corrected for spectral
sensitivity of the detector, for radiative transfer and direct absorption of
excitation by the acceptor using Eq. (2). These corrected Ip values
were employed to plot IDO/ID vs. [A] and the plots were linear in the range
of concentrations studied (Fig. 6). The ET rate parameters deduced, along
with those for perpendicular configurations are presented in Table 1.
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Figure 4. Stern-Volmer plot.

(3) Fluorescence Lifetimes

Fluorescence lifetimes of donors without () and with (tp) acceptor
were studied for the first three pairs of dyes. The lifetimes of donors
decreased with the increasing concentrations of the acceptors, which is a
direct evidence of the non-radiative ET process. Figure 7 shows a fluores-
cence decay curve of C 1, as an example. The lifetime values obtained for
individual dyes agree with the literature values (Table 2).

The plots of 1103/1:]3 vs. [A] of all the pairs obeyed Stern-Volmer rela-
tion. A typical plot for pair III is shown in Fig. 8.

The non-radiative ET rate parameters obtained are shown in Table 3.
Ry and d, calculated using Eqgs. (7) and (8), are given in Table 4.

CONCLUSIONS

The values of Ry determined from the Eq. (7) and those determined
from experimental data on fluorescence lifetimes are in agreement (Tables 3
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Figure 5. Fluorescence spectra of C102 and Ur mixtures recorded in front surface
configuration (not corrected for spectral sensitivity of detector).

and 4) for the first three pairs, and are in the range of 15—60 A, which clearly
implies the dominance of resonance mechanism?'. Also, the fact that the R,
values for all the four pairs are greater than d, further supports our argu-
ment that in all the four binary mixtures resonance transfer via long range
dipole-dipole interaction is dominant.

The ET rate parameters are configuration dependent. The difference
in the rates obtained from uncorrected and corrected intensities in the
front surface configuration is small (Table 1) and indicates that the con-
tribution from radiative transfer and direct absorption by the acceptor is
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Figure 6. Stem-Volmer plot.

not significant at the high concentrations employed. These measurements

—1 -1

in the front surface configuration yield rates of the order of 10''M™'s
whereas those from perpendicular configuration yield an order of magni-
tude higher ET rates for the same mixtures. The rates determined from

Table 1. Energy Transfer Rate Parameters Obtained from Perpendicular and Front

Surface Configuration

ke (101"M~1s7h

Perpendicular

Front Surface Configuration

Pair Configuration Uncorrected Corrected
| 51.8 3.12 2.61
II 99.6 3.82 3.20
111 78.7 1.13 1.01
1AY 126.5 1.23 0.78
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Figure 7.

front surface configuration agree with those determined from lifetime data
indicating the dominance of non-radiative ET mechanism and are also
supported by many reports>>*. Nevertheless, the high values for rate
parameters obtained from perpendicular configurations may be useful to
assess the laser performance since the laser and superradiance intensity
values also yield high transfer rates'’?*** of the order of 10'* and
10 M~'s™!. It may also be noted that values of the order of 10'*M~'s™!
for k. have been obtained for coumarin 339+A0O pair by examining laser
induced fluorescence using N, laser excitation'”. The process of radiative

Table 2. Fluorescence Lifetimes of Donors

Lifetime (ns)

Dye Measured Literature'®

Cl1 3.18 3.10
C 102 4.36 4.50
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Figure 8. Stern-Volmer plot.

Table 3. Non-radiative Energy Transfer Parameters Obtained Using Lifetimes

Pairs ke (10" M™1s7h [Al;/2 (107° M) Ro*(A°)
I 0.54 5.77 40.98
I 0.51 4.46 44.85
111 0.85 3.70 47.52

*Calculated from Eq. (6).

Table 4. Experimental Values of Ry and d

Pair Ro* (A°) d** (A°)
I 35.22 27.70
11 46.23 30.83
11 41.39 28.10
v 46.08 31.19

*Calculated from Eq. (7).
**Calculated from Eq. (8).
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transfer and direct absorption of the excitation by the acceptor do con-
tribute significantly in the perpendicular configuration as indicated by
these high k. values. The ET rate parameter determined for collisional
transfer is of the order of 10°M~'s™! and the process does not contribute
significantly. The rate parameters determined represent values due to non-
radiative ET by resonance transfer process and the dominance of reso-
nance transfer mechanism in high concentration regime in all the four
pairs studied is consistent with the theory''.
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